The Theory Of Tempering
:
HARDENING CARBON STEEL FOR TOOLS
:
The Working Of Steel
Steel that has been hardened is generally
harder and more brittle than is necessary, and in order to bring
it to the condition that meets our requirements a treatment called
tempering is used. This increases the toughness of the steel, i.e.,
decrease the brittleness at the expense of a slight decrease in
hardness.
There are several theories to explain this reaction, but generally
it is only n
cessary to remember that in hardening we quench steel
from the austenite phase, and, due to this rapid cooling, the normal
change from austenite to the eutectoid composition does not have
time to take place, and as a consequence the steel exists in a
partially transformed, unstable and very hard condition at atmospheric
temperatures. But owing to the internal rigidity which exists in
cold metal the steel is unable to change into its more stable phase
until atoms can rearrange themselves by the application of heat.
The higher the heat, the greater the transformation into the softer
phases. As the transformation takes place, a certain amount of heat
of reaction, which under slow cooling would have been released in
the critical range, is now released and helps to cause a further
slight reaction.
If a piece of steel is heated to a certain temperature and held
there, the tempering color, instead of remaining unchanged at this
temperature, will advance in the tempering-color scale as it would
with increasing temperature. This means that the tempering colors
do not absolutely correspond to the temperatures of steels, but the
variations are so slight that we can use them in actual practice.
(See Table 23, page 158.)