VIEW THE MOBILE VERSION of www.steelmaking.ca Informational Site Network Informational
Privacy
   Home - Steel Making - Categories - Manufacturing and the Economy of Machinery

Steel Making

Instructions For Working High-speed Steel
Owing to the wide variations in the composition of high-speed...

The Influence Of Size
The size of the piece influences the physical properties obta...

Crankshaft
The crankshaft was the most highly stressed part of the entir...

Cyanide Bath For Tool Steels
All high-carbon tool steels are heated in a cyanide bath. Wi...

Heat Treatment Of Axles
Parts of this general type should be heat-treated to show the...

The Theory Of Tempering
Steel that has been hardened is generally harder and more br...

Pickling The Forgings
The forgings were then pickled in a hot solution of either ni...

Protectors For Thermo-couples
Thermo-couples must be protected from the danger of mechanica...

Case-hardening Treatments For Various Steels
Plain water, salt water and linseed oil are the three most co...

Restoring Overheated Steel
The effect of heat treatment on overheated steel is shown gra...

Non-shrinking Oil-hardening Steels
Certain steels have a very low rate of expansion and contract...

Quenching Tool Steel
To secure proper hardness, the cooling of quenching of steel ...

Annealing Method
Forgings which are too hard to machine are put in pots with ...

Heating
Although it is possible to work steels cold, to an extent de...

Short Method Of Treatment
In the new method, the packed pots are run into the case-har...

Heat Treatment Of Steel
Heat treatment consists in heating and cooling metal at defin...

Flange Shields For Furnaces
Such portable flame shields as the one illustrated in Fig. 1...

Impact Tests
Impact tests are of considerable importance as an indication ...

Annealing Work
With the exception of several of the higher types of alloy s...

Standard Analysis
The selection of a standard analysis by the manufacturer is t...



S A E Heat Treatments






Category: HEAT TREATMENT OF STEEL

The Society of Automotive Engineers have adopted certain heat treatments
to suit different steels and varying conditions. These have already
been referred to on pages 39 to 41 in connection with the different
steels used in automobile practice. These treatments are designated
by letter and correspond with the designations in the table.

HEAT TREATMENTS

Heat Treatment A

After forging or machining:
1. Carbonize at a temperature between 1,600 deg.F. and 1,750 deg.F.
(1,650-1,700 deg.F. desired.)
2. Cool slowly or quench.
3. Reheat to 1,450-1,500 deg.F. and quench.

Heat Treatment B

After forging or machining:
1. Carbonize between 1,600 deg.F. and 1,750 deg.F. (1,650-1,700 deg.F.
Desired.)
2. Cool slowly in the carbonizing mixture.
3. Reheat to 1,550-1,625 deg.F.
4. Quench.
5. Reheat to 1,400-1,450 deg.F.
6. Quench.
7. Draw in hot oil at 300 to 450 deg.F., depending upon the degree of
hardness desired.

Heat Treatment D

After forging or machining:
1. Heat to 1,500-1,600 deg.F.
2. Quench.
3. Reheat to 1,450-1,500 deg.F.
4. Quench.
5. Reheat to 600-1,200 deg.F. and cool slowly.

Heat Treatment E

After forging or machining:
1. Heat to 1,500-1,550 deg.F.
2. Cool slowly.
3. Reheat to 1,450-1,500 deg.F.
4. Quench.
5. Reheat to 600-1,200 deg.F. and cool slowly.

Heat Treatment F

After shaping or coiling:
1. Heat to 1,425-1,475 deg.F.
2. Quench in oil.
3. Reheat to 400-900 deg.F., in accordance with temper desired and cool
slowly.

Heat Treatment G

After forging or machining:
1. Carbonize at a temperature between 1,600 deg.F. and 1,750 deg.F.
(1,650-1,700 deg.F. desired).
2. Cool slowly in the carbonizing mixture.
3. Reheat to 1,500-1,550 deg.F.
4. Quench.
5. Reheat to 1,300-1,400 deg.F.
6. Quench.
7. Reheat to 250-500 deg.F. (in accordance with the necessities of the case)
and cool slowly.

Heat Treatment H

After forging or machining:
1. Heat to 1,500-1,600 deg.F.
2. Quench.
3. Reheat to 600-1,200 deg.F. and cool slowly.

Heat Treatment K

After forging or machining:
1. Heat to 1,500-1,550 deg.F.
2. Quench.
3. Reheat to 1,300-1,400 deg.F.
4. Quench.
5. Reheat to 600-1,200 deg.F. and cool slowly.

Heat Treatment L

After forging or machining:
1. Carbonize between 1,600 deg.F. and 1,750 deg.F. (1,650-1,700 deg.F. desired).
2. Cool slowly in the carbonizing mixture.
3. Reheat to 1,400-1,500 deg.F.
4. Quench.
5. Reheat to 1,300-1,400 deg.F.
6. Quench.
7. Reheat to 250-500 deg.F. and cool slowly.

Heat Treatment M

After forging or machining:
1. Heat to 1,450-1,500 deg.F.
2. Quench.
3. Reheat to 500-1.250 deg.F. and cool slowly.

Heat Treatment P

After forging or machining:
1. Heat to 1,450-1,500 deg.F.
2. Quench.
3. Reheat to 1,375-1,450 deg.F. slowly.
4. Quench.
5. Reheat to 500-1,250 deg.F. and cool slowly.

Heat Treatment Q

After forging:
1. Heat to 1,475-1,525 deg.F. (Hold at this temperature one-half hour,
to insure thorough heating.)
2. Cool slowly.
3. Machine.
4. Reheat to 1,375-1,425 deg.F.
5. Quench.
6. Reheat to 250-550 deg.F. and cool slowly.

Heat Treatment R

After forging:
1. Heat to 1,500-1,550 deg.F.
2. Quench in oil.
3. Reheat to 1,200-1,300 deg.F. (Hold at this temperature three hours.)
4. Cool slowly.
5. Machine.
6. Reheat to 1,350-1,450 deg.F.
7. Quench in oil.
8. Reheat to 250-500 deg.F. and cool slowly.

Heat Treatment S

After forging or machining:
1. Carbonize at a temperature between 1,600 and 1,750 deg.F.
(1,650-1,700 deg.F. Desired.)
2. Cool slowly in the carbonizing mixture.
3. Reheat to 1,650-1,750 deg.F.
4. Quench.
5. Reheat to 1,475-1,550 deg.F.
6. Quench.
7. Reheat to 250-550 deg.F. and cool slowly.

Heat Treatment T

After forging or machining:
1. Heat to 1,650-1,750 deg.F.
2. Quench.
3. Reheat to 500-1,300 deg.F. and cool slowly.

Heat Treatment U

After forging:
1. Heat to 1,525-1,600 deg.F. (Hold for about one-half hour.)
2. Cool slowly.
3. Machine.
4. Reheat to 1,650-1,700 deg.F.
5. Quench.
6. Reheat to 350-550 deg.F. and cool slowly.

Heat Treatment V

After forging or machining:
1. Heat to 1,650-1,750 deg.F.
2. Quench.
3. Reheat to 400-1,200 deg.F. and cool slowly.





Next: Restoring Overheated Steel

Previous: Drop Forging Dies



Add to del.icio.us Add to Reddit Add to Digg Add to Del.icio.us Add to Google Add to Twitter Add to Stumble Upon
Add to Informational Site Network
Report
Privacy
SHAREADD TO EBOOK


Viewed 2889