VIEW THE MOBILE VERSION of www.steelmaking.ca Informational Site Network Informational
Privacy
   Home - Steel Making - Categories - Manufacturing and the Economy of Machinery

Steel Making

Annealing To Relieve Internal Stresses
Work quenched from a high temperature and not afterward tempe...

Conclusions
Martien was probably never a serious contender for the honor ...

Hardening
The forgings can be hardened by cooling in still air or quen...

The Thermo-couple
With the application of the thermo-couple, the measurement of...

Carburizing Material
The simplest carburizing substance is charcoal. It is also th...

Molybdenum
Molybdenum steels have been made commercially for twenty-five...

Liberty Motor Connecting Rods
The requirements for materials for the Liberty motor connecti...

Carbon Steels For Different Tools
All users of tool steels should carefully study the different...

Tempering Colors On Carbon Steels
Opinions differ as to the temperature which is indicated by t...

Highly Stressed Parts
The highly stressed parts on the Liberty engine consisted of ...

Critical Points
One of the most important means of investigating the properti...

Carburizing By Gas
The process of carburizing by gas, briefly mentioned on page ...

Plant For Forging Rifle Barrels
The forging of rifle barrels in large quantities and heat-tre...

Annealing In Bone
Steel and cast iron may both be annealed in granulated bone. ...

Case-hardening Treatments For Various Steels
Plain water, salt water and linseed oil are the three most co...

Manganese
MANGANESE is a metal much like iron. Its chemical symbol is M...

A Chromium-cobalt Steel
The Latrobe Steel Company make a high-speed steel without tun...

Complete Calibration Of Pyrometers
For the complete calibration of a thermo-couple of unknown e...

Rate Of Absorption
According to Guillet, the absorption of carbon is favored by ...

Heat Treatment Of Gear Blanks
This section is based on a paper read before the American Gea...



S A E Heat Treatments






Category: HEAT TREATMENT OF STEEL

The Society of Automotive Engineers have adopted certain heat treatments
to suit different steels and varying conditions. These have already
been referred to on pages 39 to 41 in connection with the different
steels used in automobile practice. These treatments are designated
by letter and correspond with the designations in the table.

HEAT TREATMENTS

Heat Treatment A

After forging or machining:
1. Carbonize at a temperature between 1,600 deg.F. and 1,750 deg.F.
(1,650-1,700 deg.F. desired.)
2. Cool slowly or quench.
3. Reheat to 1,450-1,500 deg.F. and quench.

Heat Treatment B

After forging or machining:
1. Carbonize between 1,600 deg.F. and 1,750 deg.F. (1,650-1,700 deg.F.
Desired.)
2. Cool slowly in the carbonizing mixture.
3. Reheat to 1,550-1,625 deg.F.
4. Quench.
5. Reheat to 1,400-1,450 deg.F.
6. Quench.
7. Draw in hot oil at 300 to 450 deg.F., depending upon the degree of
hardness desired.

Heat Treatment D

After forging or machining:
1. Heat to 1,500-1,600 deg.F.
2. Quench.
3. Reheat to 1,450-1,500 deg.F.
4. Quench.
5. Reheat to 600-1,200 deg.F. and cool slowly.

Heat Treatment E

After forging or machining:
1. Heat to 1,500-1,550 deg.F.
2. Cool slowly.
3. Reheat to 1,450-1,500 deg.F.
4. Quench.
5. Reheat to 600-1,200 deg.F. and cool slowly.

Heat Treatment F

After shaping or coiling:
1. Heat to 1,425-1,475 deg.F.
2. Quench in oil.
3. Reheat to 400-900 deg.F., in accordance with temper desired and cool
slowly.

Heat Treatment G

After forging or machining:
1. Carbonize at a temperature between 1,600 deg.F. and 1,750 deg.F.
(1,650-1,700 deg.F. desired).
2. Cool slowly in the carbonizing mixture.
3. Reheat to 1,500-1,550 deg.F.
4. Quench.
5. Reheat to 1,300-1,400 deg.F.
6. Quench.
7. Reheat to 250-500 deg.F. (in accordance with the necessities of the case)
and cool slowly.

Heat Treatment H

After forging or machining:
1. Heat to 1,500-1,600 deg.F.
2. Quench.
3. Reheat to 600-1,200 deg.F. and cool slowly.

Heat Treatment K

After forging or machining:
1. Heat to 1,500-1,550 deg.F.
2. Quench.
3. Reheat to 1,300-1,400 deg.F.
4. Quench.
5. Reheat to 600-1,200 deg.F. and cool slowly.

Heat Treatment L

After forging or machining:
1. Carbonize between 1,600 deg.F. and 1,750 deg.F. (1,650-1,700 deg.F. desired).
2. Cool slowly in the carbonizing mixture.
3. Reheat to 1,400-1,500 deg.F.
4. Quench.
5. Reheat to 1,300-1,400 deg.F.
6. Quench.
7. Reheat to 250-500 deg.F. and cool slowly.

Heat Treatment M

After forging or machining:
1. Heat to 1,450-1,500 deg.F.
2. Quench.
3. Reheat to 500-1.250 deg.F. and cool slowly.

Heat Treatment P

After forging or machining:
1. Heat to 1,450-1,500 deg.F.
2. Quench.
3. Reheat to 1,375-1,450 deg.F. slowly.
4. Quench.
5. Reheat to 500-1,250 deg.F. and cool slowly.

Heat Treatment Q

After forging:
1. Heat to 1,475-1,525 deg.F. (Hold at this temperature one-half hour,
to insure thorough heating.)
2. Cool slowly.
3. Machine.
4. Reheat to 1,375-1,425 deg.F.
5. Quench.
6. Reheat to 250-550 deg.F. and cool slowly.

Heat Treatment R

After forging:
1. Heat to 1,500-1,550 deg.F.
2. Quench in oil.
3. Reheat to 1,200-1,300 deg.F. (Hold at this temperature three hours.)
4. Cool slowly.
5. Machine.
6. Reheat to 1,350-1,450 deg.F.
7. Quench in oil.
8. Reheat to 250-500 deg.F. and cool slowly.

Heat Treatment S

After forging or machining:
1. Carbonize at a temperature between 1,600 and 1,750 deg.F.
(1,650-1,700 deg.F. Desired.)
2. Cool slowly in the carbonizing mixture.
3. Reheat to 1,650-1,750 deg.F.
4. Quench.
5. Reheat to 1,475-1,550 deg.F.
6. Quench.
7. Reheat to 250-550 deg.F. and cool slowly.

Heat Treatment T

After forging or machining:
1. Heat to 1,650-1,750 deg.F.
2. Quench.
3. Reheat to 500-1,300 deg.F. and cool slowly.

Heat Treatment U

After forging:
1. Heat to 1,525-1,600 deg.F. (Hold for about one-half hour.)
2. Cool slowly.
3. Machine.
4. Reheat to 1,650-1,700 deg.F.
5. Quench.
6. Reheat to 350-550 deg.F. and cool slowly.

Heat Treatment V

After forging or machining:
1. Heat to 1,650-1,750 deg.F.
2. Quench.
3. Reheat to 400-1,200 deg.F. and cool slowly.





Next: Restoring Overheated Steel

Previous: Drop Forging Dies



Add to del.icio.us Add to Reddit Add to Digg Add to Del.icio.us Add to Google Add to Twitter Add to Stumble Upon
Add to Informational Site Network
Report
Privacy
SHAREADD TO EBOOK


Viewed 2783