VIEW THE MOBILE VERSION of www.steelmaking.ca Informational Site Network Informational
Privacy
   Home - Steel Making - Categories - Manufacturing and the Economy of Machinery

Steel Making

Composition Of Transmission-gear Steel
If the nickel content of this steel is eliminated, and the pe...

The Modern Hardening Room
A hardening room of today means a very different place from ...

Annealing Of Rifle Components At Springfield Armory
In general, all forgings of the components of the arms manufa...

Shrinking And Enlarging Work
Steel can be shrunk or enlarged by proper heating and cooling...

Detrimental Elements
Sulphur and phosphorus are two elements known to be detrimen...

Knowing What Takes Place
How are we to know if we have given a piece of steel the ver...

Hardening High-speed Steels
We will now take up the matter of hardening high-speed steels...

For Milling Cutters And Formed Tools
FORGING.--Forge as before.--ANNEALING.--Place the steel in a ...

Testing And Inspection Of Heat Treatment
The hard parts of the gear must be so hard that a new mill f...

The Pyrometer And Its Use
In the heat treatment of steel, it has become absolutely nece...

Pyrometers For Molten Metal
Pyrometers for molten metal are connected to portable thermoc...

Tungsten
Tungsten, as an alloy in steel, has been known and used for a...

Hardening
Steel is hardened by quenching from above the upper critical....

Heat Treatment Of Milling Cutters Drills Reamers Etc
THE FIRE.--Gas and electric furnaces designed for high heats ...

Suggestions For Handling High-speed Steels
The following suggestions for handling high-speed steels are ...

Hardening Carbon Steel For Tools
For years the toolmaker had full sway in regard to make of st...

Preparing Parts For Local Case-hardening
At the works of the Dayton Engineering Laboratories Company, ...

Typical Oil-fired Furnaces
Several types of standard oil-fired furnaces are shown herew...

Steel Before The 1850's
In spite of a rapid increase in the use of machines and the ...

Complete Calibration Of Pyrometers
For the complete calibration of a thermo-couple of unknown e...



Corrosion






Category: ALLOYS AND THEIR EFFECT UPON STEEL

This steel like any other steel when distorted by cold
working is more sensitive to corrosion and will rust. Rough cut
surfaces will rust. Surfaces finished with a fine cut are less
liable to rust. Ground and polished surfaces are practically immune
to rust.

When chromium content is increased to 16 to 18 per cent and silicon
is added, from 2 to 4 per cent, this steel becomes rust proof in
its raw state, as soon as the outside surface is removed. It does
not need to be heat-treated in any way. These compositions are
both patented.

S. A. E. STANDARD STEELS

The following steel specifications are considered standard by the
Society of Automotive Engineers and represents automobile practice in
this country. These tables give the S. A. E. number, the composition
of the steel and the heat treatment. These are referred to by
letter--the heat treatments being given in detail on pages 134
to 137 in Chap. 8. It should be noted that the percentage of the
different ingredients desired is the mean, or halfway between the
minimum and maximum.

TABLE 4.--CARBON STEELS
------------------------------------------------------------------------------
S. A. E. Carbon Manganese
Specification(minimum and (minimum and Phosphorus Sulphur Heat
no. maximum) maximum) (maximum) (maximum) treatment
-------------------------------------------------------------------------
1,010 0.05 to 0.15 0.30 to 0.60 0.045 0.05 Quench at 1,500
1,020 0.15 to 0.25 0.30 to 0.60 0.045 0.05 A or B
1,025 0.20 to 0.30 0.50 to 0.80 0.045 0.05 H

1,035 0.30 to 0.40 0.50 to 0.80 0.045 0.05 H, D or E
1,045 0.40 to 0.50 0.50 to 0.80 0.045 0.05 H, D or E
1,095 0.90 to 1.05 0.25 to 0.50 0.040 0.05 F
------------------------------------------------------------------------------

TABLE 5.--SCREW STOCK
---------------------------------------------------------------------------
S. A. E. Carbon Manganese Phosphorus Sulphur
Specification no. (maximum)
-----------------------------------------------------------------------
1,114 0.08 to 0.20 0.30 to 0.80 0.12 0.06 to 0.12
---------------------------------------------------------------------------

TABLE 6.--NICKEL STEELS
-----------------------------------------------------------------------------
S. A. E. Phosphorus
Specification (maximum)
no. ---- /
Carbon Manganese Sulphur Nickel Heat
(minimum and(minimum and (maximum)(minimum andtreatment
maximum) maximum) maximum)
-----------------------------------------------------------------------
2,315 0.10 to 0.200.50 to 0.80 0.04 0.045 3.25 to 3.75G, H or K
2,320 0.15 to 0.250.50 to 0.80 0.04 0.045 3.25 to 3.75G, H or K
2,330 0.25 to 0.350.50 to 0.80 0.04 0.045 3.25 to 3.75 H or K

2,335 0.30 to 0.400.50 to 0.80 0.04 0.045 3.25 to 3.75 H or K
2,340 0.35 to 0.450.50 to 0.80 0.04 0.045 3.25 to 3.75 H or K
2,345 0.40 to 0.500.50 to 0.80 0.04 0.045 3.25 to 3.75 H or K
-----------------------------------------------------------------------------

TABLE 7.--NICKEL-CHROMIUM STEELS
-------------------------------------------------------------------------------
S. A. E. Phosphorus Sulphur
Specification (maximum)(maximum) Heat
no. ------ ------ ---- treatment
Carbon Manganese Nickel Chromium
(minimum and(minimum and (minimum and(minimum and
maximum) maximum) maximum) maximum)
------------------------------------------------------------------------
3,1200.15 to 0.250.50 to 0.800.040.0451.00 to 1.500.45 to 0.75*G,H or D
3,1250.20 to 0.300.50 to 0.800.040.0451.00 to 1.500.45 to 0.75*H,D or E
3,1300.25 to 0.350.50 to 0.800.040.0451.00 to 1.500.45 to 0.75*H,D or E

3,1350.30 to 0.400.50 to 0 800.040.0451.00 to 1.500.45 to 0 75*H,D or E
3,1400.35 to 0.450.50 to 0.800.040.0451.00 to 1.500.45 to 0.75*H,D or E
3,2200.15 to 0.250.30 to 0.600.040.0401.50 to 2.000.90 to 1.25 G,H or D

3,2300.25 to 0.350.30 to 0.600.040.0401.50 to 2.000.90 to 1.25 H or D
3,2400.35 to 0.450.30 to 0.600.040.0401.50 to 2.000.90 to 1.25 H or D
3,2500.45 to 0.550.30 to 0.600.040.0401.50 to 2.000.90 to 1.25 M or Q

X3,3150.10 to 0.200.45 to 0.750.040.0402.75 to 3.250.60 to 0.95 G
X3,3350.30 to 0.400.45 to 0.750.040.0402.75 to 3.250.60 to 0.95 P or R
X3,3500.45 to 0.550.45 to 0.750.040.0402.75 to 3.250.60 to 0.95 P or R

3,3200.15 to 0.250.30 to 0.600.040.0403.25 to 3.751.25 to 1.75 L
3,3300.25 to 0.350.30 to 0.600.040.0403.25 to 3.751.25 to 1.75 P or R
3,3400.35 to 0.450.30 to 0.600.040.0403.25 to 3.751.25 to 1.75 P or R
-------------------------------------------------------------------------------
* Another grade of this type of steel is available with chromium content
of 0.15 per cent to 45 per cent. It has somewhat lower physical properties.

TABLE 8.--CHROMIUM STEELS
-------------------------------------------------------------------------------
S. A. E.
Specification
no. --- Carbon Manganese Chromium
(minimum and(minimum andPhosphorusSulphur (minimum and Heat
maximum) maximum) (maximum) (maximum) maximum) treatment
-------------------------------------------------------------------------
5,120 0.15 to 0.25 * 0.04 0.045 0.65 to 0.85 B
5,140 0.35 to 0.45 * 0.04 0.045 0.65 to 0.85 H or D
5,165 0.60 to 0.70 * 0.04 0.045 0.65 to 0.85 H or D

5,195 0.90 to 1.050.20 to 0.45 0.03 0.03 0.90 to 1.10M, P or R
51,120 1.10 to 1.300.20 to 0.45 0.03 0.03 0.90 to 1.10M, P or R
5,295 0.90 to 1.050.20 to 0.45 0.03 0.03 1.10 to 1.30M, P or R
52,120 1.10 to 1.300.20 to 0.45 0.03 0.03 1.10 to 1.30M, P or R
-------------------------------------------------------------------------------
--Two types of steel are available in this class, one with manganese 0.25
to 0.50 per cent (0.35 per cent desired), and silicon not over 0.20 per
cent; the other with manganese 0.60 to 0.80 per cent (0.70 per cent
desired), and silicon 0.15 to 0.50 per cent.

TABLE 9.--CHROMIUM-VANADIUM STEELS
-------------------------------------------------------------------------------
S. A. E. Phosphorus Sulphur Vanadium
Specification (maximum)(maximum) (minimum)
no. ------ -- / -
Carbon Manganese Chromium Heat
(minimum and(minimum and (minimum and treatment
maximum) maximum) maximum)
------------------------------------------------------------------------
6,120 0.15 to 0.250.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 S
6,125 0.20 to 0.300.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 S or T
6,130 0.25 to 0.350.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 T or U
6,135 0.30 to 0.400.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 T or U
6,140 0.35 to 0.450.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 T or U
6,145 0.40 to 0.500.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 U
6,150 0.45 to 0.550.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 U
6,195 0.90 to 1.050.20 to 0.45 0.03 0.03 0.80 to 1.10 0.15 U
-------------------------------------------------------------------------------

TABLE 10.--SILICO-MANGANESE STEELS
-----------------------------------------------------------------------------
S. A. E.
Specification
no. ----- Carbon Manganese Silicon
(minimum and(minimum andPhosphorusSulphur (minimum and Heat
maximum) maximum) (maximum) (maximum) maximum) treatment
-----------------------------------------------------------------------
9,250 0.45 to 0.550.60 to 0.80 0.045* 0.045 1.80 to 2.10 V
9,260 0.55 to 0.650.50 to 0.70 0.045* 0.045 1.50 to 1.80 V
-----------------------------------------------------------------------------
* Steel made by the acid process may contain maximum 0.05 phosphorus.





Next: Liberty Motor Connecting Rods

Previous: Hardening



Add to del.icio.us Add to Reddit Add to Digg Add to Del.icio.us Add to Google Add to Twitter Add to Stumble Upon
Add to Informational Site Network
Report
Privacy
SHAREADD TO EBOOK


Viewed 2900