VIEW THE MOBILE VERSION of www.steelmaking.ca Informational Site Network Informational
Privacy
   Home - Steel Making - Categories - Manufacturing and the Economy of Machinery

Steel Making

Conclusions
Martien was probably never a serious contender for the honor ...

A Satisfactory Luting Mixture
A mixture of fireclay and sand will be found very satisfactor...

Effects Of Proper Annealing
Proper annealing of low-carbon steels causes a complete solu...

Annealing To Relieve Internal Stresses
Work quenched from a high temperature and not afterward tempe...

Cyanide Bath For Tool Steels
All high-carbon tool steels are heated in a cyanide bath. Wi...

Alloying Elements
Commercial steels of even the simplest types are therefore p...

Temperatures To Use
As soon as the temperature of the steel reaches 100 deg.C. (...

Temperature Recording And Regulation
Each furnace is equipped with pyrometers, but the reading an...

Bessemer Process
The bessemer process consists of charging molten pig iron int...

Sulphur
Sulphur is another impurity and high sulphur is even a greate...

Correction By Zero Adjustment
Many pyrometers are supplied with a zero adjuster, by means ...

Heat-treating Equipment And Methods For Mass Production
The heat-treating department of the Brown-Lipe-Chapin Company...

Surface Carburizing
Carburizing, commonly called case-hardening, is the art of pr...

High-carbon Machinery Steel
The carbon content of this steel is above 30 points and is ha...

Air-hardening Steels
These steels are recommended for boring, turning and planing...

High-chromium Or Rust-proof Steel
High-chromium, or what is called stainless steel containing f...

Composition Of Transmission-gear Steel
If the nickel content of this steel is eliminated, and the pe...

Short Method Of Treatment
In the new method, the packed pots are run into the case-har...

Heat Treatment Of Axles
Parts of this general type should be heat-treated to show the...

Standard Analysis
The selection of a standard analysis by the manufacturer is t...



Corrosion






Category: ALLOYS AND THEIR EFFECT UPON STEEL

This steel like any other steel when distorted by cold
working is more sensitive to corrosion and will rust. Rough cut
surfaces will rust. Surfaces finished with a fine cut are less
liable to rust. Ground and polished surfaces are practically immune
to rust.

When chromium content is increased to 16 to 18 per cent and silicon
is added, from 2 to 4 per cent, this steel becomes rust proof in
its raw state, as soon as the outside surface is removed. It does
not need to be heat-treated in any way. These compositions are
both patented.

S. A. E. STANDARD STEELS

The following steel specifications are considered standard by the
Society of Automotive Engineers and represents automobile practice in
this country. These tables give the S. A. E. number, the composition
of the steel and the heat treatment. These are referred to by
letter--the heat treatments being given in detail on pages 134
to 137 in Chap. 8. It should be noted that the percentage of the
different ingredients desired is the mean, or halfway between the
minimum and maximum.

TABLE 4.--CARBON STEELS
------------------------------------------------------------------------------
S. A. E. Carbon Manganese
Specification(minimum and (minimum and Phosphorus Sulphur Heat
no. maximum) maximum) (maximum) (maximum) treatment
-------------------------------------------------------------------------
1,010 0.05 to 0.15 0.30 to 0.60 0.045 0.05 Quench at 1,500
1,020 0.15 to 0.25 0.30 to 0.60 0.045 0.05 A or B
1,025 0.20 to 0.30 0.50 to 0.80 0.045 0.05 H

1,035 0.30 to 0.40 0.50 to 0.80 0.045 0.05 H, D or E
1,045 0.40 to 0.50 0.50 to 0.80 0.045 0.05 H, D or E
1,095 0.90 to 1.05 0.25 to 0.50 0.040 0.05 F
------------------------------------------------------------------------------

TABLE 5.--SCREW STOCK
---------------------------------------------------------------------------
S. A. E. Carbon Manganese Phosphorus Sulphur
Specification no. (maximum)
-----------------------------------------------------------------------
1,114 0.08 to 0.20 0.30 to 0.80 0.12 0.06 to 0.12
---------------------------------------------------------------------------

TABLE 6.--NICKEL STEELS
-----------------------------------------------------------------------------
S. A. E. Phosphorus
Specification (maximum)
no. ---- /
Carbon Manganese Sulphur Nickel Heat
(minimum and(minimum and (maximum)(minimum andtreatment
maximum) maximum) maximum)
-----------------------------------------------------------------------
2,315 0.10 to 0.200.50 to 0.80 0.04 0.045 3.25 to 3.75G, H or K
2,320 0.15 to 0.250.50 to 0.80 0.04 0.045 3.25 to 3.75G, H or K
2,330 0.25 to 0.350.50 to 0.80 0.04 0.045 3.25 to 3.75 H or K

2,335 0.30 to 0.400.50 to 0.80 0.04 0.045 3.25 to 3.75 H or K
2,340 0.35 to 0.450.50 to 0.80 0.04 0.045 3.25 to 3.75 H or K
2,345 0.40 to 0.500.50 to 0.80 0.04 0.045 3.25 to 3.75 H or K
-----------------------------------------------------------------------------

TABLE 7.--NICKEL-CHROMIUM STEELS
-------------------------------------------------------------------------------
S. A. E. Phosphorus Sulphur
Specification (maximum)(maximum) Heat
no. ------ ------ ---- treatment
Carbon Manganese Nickel Chromium
(minimum and(minimum and (minimum and(minimum and
maximum) maximum) maximum) maximum)
------------------------------------------------------------------------
3,1200.15 to 0.250.50 to 0.800.040.0451.00 to 1.500.45 to 0.75*G,H or D
3,1250.20 to 0.300.50 to 0.800.040.0451.00 to 1.500.45 to 0.75*H,D or E
3,1300.25 to 0.350.50 to 0.800.040.0451.00 to 1.500.45 to 0.75*H,D or E

3,1350.30 to 0.400.50 to 0 800.040.0451.00 to 1.500.45 to 0 75*H,D or E
3,1400.35 to 0.450.50 to 0.800.040.0451.00 to 1.500.45 to 0.75*H,D or E
3,2200.15 to 0.250.30 to 0.600.040.0401.50 to 2.000.90 to 1.25 G,H or D

3,2300.25 to 0.350.30 to 0.600.040.0401.50 to 2.000.90 to 1.25 H or D
3,2400.35 to 0.450.30 to 0.600.040.0401.50 to 2.000.90 to 1.25 H or D
3,2500.45 to 0.550.30 to 0.600.040.0401.50 to 2.000.90 to 1.25 M or Q

X3,3150.10 to 0.200.45 to 0.750.040.0402.75 to 3.250.60 to 0.95 G
X3,3350.30 to 0.400.45 to 0.750.040.0402.75 to 3.250.60 to 0.95 P or R
X3,3500.45 to 0.550.45 to 0.750.040.0402.75 to 3.250.60 to 0.95 P or R

3,3200.15 to 0.250.30 to 0.600.040.0403.25 to 3.751.25 to 1.75 L
3,3300.25 to 0.350.30 to 0.600.040.0403.25 to 3.751.25 to 1.75 P or R
3,3400.35 to 0.450.30 to 0.600.040.0403.25 to 3.751.25 to 1.75 P or R
-------------------------------------------------------------------------------
* Another grade of this type of steel is available with chromium content
of 0.15 per cent to 45 per cent. It has somewhat lower physical properties.

TABLE 8.--CHROMIUM STEELS
-------------------------------------------------------------------------------
S. A. E.
Specification
no. --- Carbon Manganese Chromium
(minimum and(minimum andPhosphorusSulphur (minimum and Heat
maximum) maximum) (maximum) (maximum) maximum) treatment
-------------------------------------------------------------------------
5,120 0.15 to 0.25 * 0.04 0.045 0.65 to 0.85 B
5,140 0.35 to 0.45 * 0.04 0.045 0.65 to 0.85 H or D
5,165 0.60 to 0.70 * 0.04 0.045 0.65 to 0.85 H or D

5,195 0.90 to 1.050.20 to 0.45 0.03 0.03 0.90 to 1.10M, P or R
51,120 1.10 to 1.300.20 to 0.45 0.03 0.03 0.90 to 1.10M, P or R
5,295 0.90 to 1.050.20 to 0.45 0.03 0.03 1.10 to 1.30M, P or R
52,120 1.10 to 1.300.20 to 0.45 0.03 0.03 1.10 to 1.30M, P or R
-------------------------------------------------------------------------------
--Two types of steel are available in this class, one with manganese 0.25
to 0.50 per cent (0.35 per cent desired), and silicon not over 0.20 per
cent; the other with manganese 0.60 to 0.80 per cent (0.70 per cent
desired), and silicon 0.15 to 0.50 per cent.

TABLE 9.--CHROMIUM-VANADIUM STEELS
-------------------------------------------------------------------------------
S. A. E. Phosphorus Sulphur Vanadium
Specification (maximum)(maximum) (minimum)
no. ------ -- / -
Carbon Manganese Chromium Heat
(minimum and(minimum and (minimum and treatment
maximum) maximum) maximum)
------------------------------------------------------------------------
6,120 0.15 to 0.250.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 S
6,125 0.20 to 0.300.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 S or T
6,130 0.25 to 0.350.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 T or U
6,135 0.30 to 0.400.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 T or U
6,140 0.35 to 0.450.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 T or U
6,145 0.40 to 0.500.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 U
6,150 0.45 to 0.550.50 to 0.80 0.04 0.04 0.80 to 1.10 0.15 U
6,195 0.90 to 1.050.20 to 0.45 0.03 0.03 0.80 to 1.10 0.15 U
-------------------------------------------------------------------------------

TABLE 10.--SILICO-MANGANESE STEELS
-----------------------------------------------------------------------------
S. A. E.
Specification
no. ----- Carbon Manganese Silicon
(minimum and(minimum andPhosphorusSulphur (minimum and Heat
maximum) maximum) (maximum) (maximum) maximum) treatment
-----------------------------------------------------------------------
9,250 0.45 to 0.550.60 to 0.80 0.045* 0.045 1.80 to 2.10 V
9,260 0.55 to 0.650.50 to 0.70 0.045* 0.045 1.50 to 1.80 V
-----------------------------------------------------------------------------
* Steel made by the acid process may contain maximum 0.05 phosphorus.





Next: Liberty Motor Connecting Rods

Previous: Hardening



Add to del.icio.us Add to Reddit Add to Digg Add to Del.icio.us Add to Google Add to Twitter Add to Stumble Upon
Add to Informational Site Network
Report
Privacy
SHAREADD TO EBOOK


Viewed 4381